The p-elastic flow for planar closed curves with constant parametrization

نویسندگان

چکیده

In this paper, we consider the L2-gradient flow for modified p-elastic energy defined on planar closed curves. We formulate a notion of weak solution and prove existence global-in-time solutions with p≥2 initial curves in space via minimizing movements. Moreover, unique to p=2 obtain their subconvergence an elastica as t→∞. Nous nous penchons sur le flot de gradient L2 l'équation p-élastique modifiée et défini les courbes planaires fermées. formulons une faible pour flot, démontrons par méthode « mouvements minimisants » l'existence globale (temporelle) faibles dans cas avec donnée initiale appropriée. En outre, établissons l'unicité d'une du flot. enfin qu'il existe suite temps tj→∞ telle que la correspondante des γ(tj) converge vers elastica.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametrization and Classifiication of Closed Anatomical Curves

We present a streamlined mathematical framework for modeling and classifying closed curves from medical images. The method of gradient vector flow (GVF) snakes is used to extract object boundaries in the magnetic resonance images of the human brain. The curvature based arc-length parametrization is used to parameterize the extracted boundary. A linear curve registration is then performed to ali...

متن کامل

Curve shortening-straightening flow for non-closed planar curves with infinite length

We consider a motion of non-closed planar curves with infinite length. The motion is governed by a steepest descent flow for the geometric functional which consists of the sum of the length functional and the total squared curvature. We call the flow shorteningstraightening flow. In this paper, first we prove a long time existence result for the shortening-straightening flow for non-closed plan...

متن کامل

On Sampling Closed Planar Curves and Surfaces

In this paper we consider a problem of sampling a continuous planar curve. We show that in order to sample a curve, one needs to impose a priori assumptions about the type of parameterization (coordinate system), which would provide a functional form for otherwise just a set of points on the plane. The emphasis in this paper is on curves representable in polar coordinates, but the sampling tech...

متن کامل

Curvature-based blending of closed planar curves

A common way of blending between two planar curves is to linearly interpolate their signed curvature functions and to reconstruct the intermediate curve from the interpolated curvature values. But if both input curves are closed, this strategy can lead to open intermediate curves. We present a new algorithm for solving this problem, which finds the closed curve whose curvature is closest to the...

متن کامل

Parametric approximation of isotropic and anisotropic elastic flow for closed and open curves

Deckelnick and Dziuk (2009) proved a stability bound for a continuous-in-time semidiscrete parametric finite element approximation of Willmore flow/elastic flow of closed curves in R, d ≥ 2. We extend these ideas in considering an alternative finite element approximation of the same flow that retains some of the features of the formulations in Barrett, Garcke, and Nürnberg (2007b, 2008b, 2010b)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Mathématiques Pures et Appliquées

سال: 2023

ISSN: ['0021-7824', '1776-3371']

DOI: https://doi.org/10.1016/j.matpur.2023.02.001